Cours Sur La Géométrie Dans L Espace

Thursday, 4 July 2024

Repérage dans l'espace Coordonnées dans l'espace Définition: Un repère dans l'espace est déterminé par un point O (origine du repère) et un triplet (𝒊⃗, 𝒋⃗, 𝒌⃗), de vecteurs non coplanaires appelé base de vecteurs. On le note (𝑶; 𝒊⃗, 𝒋⃗, 𝒌⃗) 𝒊⃗= OI, 𝒋⃗ = OJ, 𝒌⃗ =OK le repère est dit orthonormé lorsque les droites ( OI), (OJ), (OK) sont deux à deux perpendiculaires et OI=OJ=OK=1 la droite (OI) est l'axe des abscisses, la droite (OJ) est l'axe des ordonnées et la droite (OK) est l'axe des côtes. Coordonnées d'un point Pour tout point de l'espace, il existe un unique un unique triplet ( x; y; z) de réels tels que: O M → = x i → + y j → + z k → Coordonnées d'un vecteur A tout vecteur 𝒖⃗ on peut associer un unique triplet ( x; 𝒚; z) tel que: u → = x i → + y j → + z k → Ce triplet ( x; 𝒚; z) est appelé coordonnées du point M ou de vecteur 𝒖⃗ Représentation paramétrique d'une droite de l'espace L'espace est muni d'un repère orthonormé (𝑶; 𝒊⃗, 𝒋⃗, 𝒌⃗). On considère la droite (D) passant par le point A ( x A; y A; z A) et de vecteur directeur 𝒖⃗( 𝜶; 𝜷; 𝜸).

  1. Cours sur la géométrie dans l'espace client
  2. Cours sur la géométrie dans l espace exercices

Cours Sur La Géométrie Dans L'espace Client

Remarques: Des droites orthogonales de l'espace ne sont pas nécessairement sécantes. Des droites qui sont à la fois orthogonales et sécantes sont perpendiculaires. Exemple: Dans l'exemple précédent du cube ABCDEFH, les droites (AB) et (CG) sont orthogonales car (AB) et (BF) sont perpendiculaires et (CG) et (BF) sont parallèles. droites et les plans: Une droite peut être: Incluse dans un plan, si tous ses points appartiennent au plan. Parallèle à un plan, s'ils n'ont aucun point commun. Sécante à un plan, s'ils ne sont pas parallèles. Ils ont alors un unique point commun. Orthogonale (ou perpendiculaire) à un plan, si elle est orthogonale à toutes les droites incluses dans le plan. plans entre eux: Deux plans peuvent être: Confondus ou égaux. Parallèles s'ils sont confondus ou s'ils n'ont aucun point commun. Sécantes s'ils ne sont pas parallèles. Leur intersection est alors une droite. Perpendiculaires si l'un des plans contient une droite orthogonale à l'autre plan. Les droites incluses dans des plans ne sont pas nécessairement perpendiculaires, ni même orthogonales.

Cours Sur La Géométrie Dans L Espace Exercices

Parallélépipède rectangle Un parallélépipède rectangle (ou pavé droit) est un solide possédant faces, dont tous les angles sont des angles droits. Il a faces, sommets et arêtes. Repérage dans un pavé droit Pour se repérer dans un pavé droit, il faut munir l'espace d'un repère composé d'une origine et de axes gradués perpendiculaires. Les coordonnées d'un point seront composées: d'une abscisse (); d'une ordonnée (); d'une altitude (). Dans la figure suivante, est l'origine du repère. Le point par exemple a pour coordonnées et. Consigne: En utilisant la figure précédente, quelles sont les coordonnées des points, et? Correction: car se situe sur l'axe (altitude). Pour aller de à, il faut graduations en abscisse et en ordonnées donc:. Pour aller de à, il faut graduations en abscisse, en ordonnées et en altitude donc:.

Droite et plan strictement parallèles Droite et plan sécants: On dit qu'une droite et un plan sont sécants lorsqu'ils ne sont pas parallèles. Leur intersection est alors un point. Droite et plan sécants Parallélisme et orthogonalité entre droites et plans Théorèmes sur le parallélisme Théorème Si deux droites sont parallèles, tout plan qui coupe l'une coupe l'autre. Si deux plans sont parallèles, toute droite qui coupe l'un coupe l'autre. Si deux plans sont parallèles, tout plan qui coupe l'un coupe l'autre et les droites d'intersection sont parallèles. Si deux droites sont parallèles à une même troisième alors ces deux droites sont parallèles. Si deux plans sont parallèles à une même troisième alors ces deux plans sont parallèles. Si une droite D D est parallèle à un plan P P alors tout plan Q Q qui contient D D coupe le plan P P suivant une parallèle à D D. Les plans P P et R R sont parallèles. Ils coupent Q Q suivant deux droites parallèles D D et D ′ D'. La droite D ′ ′ D'' qui coupe R R coupe aussi P P. Théorèmes sur l'orthogonalité De même que pour le parallélisme, l'orthogonalité est démontrable à partir de plusieurs théorèmes.