Relation D Équivalence Et Relation D Ordre Des

Thursday, 4 July 2024

Dans ce cas 2 éléments en relation on a: 1R4 et 2R5 par exemple Posté par Edison re: Relation d'équivalence et d'ordre 17-02-18 à 17:11 Autant pour moi je voulais faire un R barré obliquement, je reprends: 1) Deux éléments en relation: 1R4 et 2R5 Deux éléments qui ne sont pas en relation: 3Ꞧ2 et 6Ꞧ5 Posté par carpediem re: Relation d'équivalence et d'ordre 17-02-18 à 17:13 pourquoi abuser inutilement de symboles et ne pas le dire en français correctement?

  1. Relation d équivalence et relation d'ordres
  2. Relation d équivalence et relation d ordre des experts
  3. Relation d équivalence et relation d ordre alkiane

Relation D Équivalence Et Relation D'ordres

La notion ensembliste de relation d'équivalence est omniprésente en mathématiques. Elle permet, dans un ensemble, de mettre en relation des éléments qui sont similaires par une certaine propriété. On pourra ainsi regrouper ces éléments par « paquets » d'éléments qui se ressemblent, définissant ainsi la notion de classe d'équivalence, pour enfin construire de nouveaux ensembles en « assimilant » les éléments similaires à un seul et même élément. On aboutit alors à la notion d' ensemble quotient. Sur cet ensemble de huit exemplaires de livres, la relation « … a le même ISBN que … » est une relation d'équivalence. Définition [ modifier | modifier le code] Définition formelle [ modifier | modifier le code] Une relation d'équivalence sur un ensemble E est une relation binaire ~ sur E qui est à la fois réflexive, symétrique et transitive. Plus explicitement: ~ est une relation binaire sur E: un couple ( x, y) d'éléments de E appartient au graphe de cette relation si et seulement si x ~ y. ~ est réflexive: pour tout élément x de E, on a x ~ x.

Relation D Équivalence Et Relation D Ordre Des Experts

Relation d'ordre suivant: Dénombrement monter: Relation d'équivalence, relation d'ordre précédent: Relation d'équivalence Exercice 213 La relation ``divise'' est-elle une relation d'ordre sur? sur? Si oui, est-ce une relation d'ordre total? Exercice 214 Étudier les propriétés des relations suivantes. Dans le cas d'une relation d'équivalence, préciser les classes; dans le cas d'une relation d'ordre, préciser si elle est totale, si l'ensemble admet un plus petit ou plus grand élément. Dans:. Dans: et ont la même parité est divisible par. Exercice 215 Soient et deux ensembles ordonnés (on note abusivement les deux ordres de la même façon). On définit sur la relation ssi ou et. Montrer que c'est un ordre et qu'il est total ssi et sont totalement ordonnés. Exercice 216 Un ensemble est dit bien ordonné si toute partie non vide admet un plus petit élément. Donner un exemple d'ensemble bien ordonné et un exemple d'ensemble qui ne l'est pas. Montrer que bien ordonné implique totalement ordonné.

Relation D Équivalence Et Relation D Ordre Alkiane

Relation de parallélisme sur les droites du plan: si \(d\) est une droite, sa classe d'équivalence \(C_d\) est par définition la direction de \(d. \) Relation d'équipollence sur les bipoints \((A, B)\): la classe d'équivalence \(C_{AB}\) est par définition le vecteur libre \(AB. \) Pour les angles du plan, la classe d'équivalence d'un angle par la relation de congruence modulo \(2\pi\) est l'angle lui-même modulo \(2\pi. \) Pour la congruence modulo \(n, \) les classes d'équivalence sont représentées par \(0, 1, 2, \dots, n-1, \) où \(i = \{x~ |~\exists k\in\mathbb Z, x - i = kn \}. \) \(E = \mathbb N \times \mathbb N, ~ (a, b) \color{red}R\color{black} (a', b')\Leftrightarrow a + b' = a' + b. \) La classe de \((a, b)\) est par définition le nombre relatif \(a - b. \) \(E = \mathbb Z \times \mathbb Z^ *, ~ (p, q)\color{red}R\color{black} (p', q')\Leftrightarrow pq' = p'q. \) La classe de \((p, q)\) est par définition le nombre rationnel \(p/q. \)

Notes et références [ modifier | modifier le code] ↑ N. Bourbaki, Éléments de mathématique: Théorie des ensembles [ détail des éditions], p. II-41 sur Google Livres. ↑ (en) W. D. Wallis, A Beginner's Guide to Discrete Mathematics, Springer Science+Business Media, 2011, 2 e éd. ( DOI 10. 1007/978-0-8176-8286-6, lire en ligne), p. 104. ↑ Bourbaki, Théorie des ensembles, p. II-42. ↑ N. Bourbaki, Éléments de mathématique, Algèbre, chapitres 1 à 3, p. I-11. ↑ Jean-Pierre Ramis, André Warusfel et al., Mathématiques. Tout-en-un pour la Licence. Niveau 1, Dunod, 2013, 2 e éd., 896 p. ( ISBN 978-2-10-060013-7, lire en ligne), p. 31. Portail des mathématiques