[Espace Bac Pro Marc Seguin] Chap 3 : Suites Numériques

Tuesday, 2 July 2024

Suites numériques - AlloSchool

Exercice Suite Numérique Bac Pro Vente

Exemples: 1. un = sin(n) 2. un = n2, 2. Propriétés 2. 1 Comportement d'une suite Une suite (un)n est dite: - croissante (ou strictement croissante) lorsque un+1 ≥ un (ou un+1 > un) pour tout n. - décroissante (ou strictement décroissante) lorsque un+1 ≤ un (ou un+1 - monotone lorsqu'elle est croissante ou décroissante. Quand il s'agit d'étudier le comportement d'une suite, on peut soit étudier le signe de un+1 – un, soit étudier le comportement de la fonction associée. Exemple: pour tout n > 0 On a donc la suite (un)n est décroissante. Ou on peut étudier la fonction f(x) =. On a f'(x) = < 0 avec tout x ≠ 0 donc la fonction est décroissante, donc la suite (un)n est décroissante. - majorée s'il existe un réel M tel que un ≤ n M pour tout n. - minorée s'il existe un réel m tel que un ≥ m pour tout n. - bornée si elle est minorée et majorée. Théorème: Toute suite croissante et majorée (ou décroissante et minorée) est convergente. Suites numériques - Cours et exercices de Maths, Terminale Bac Pro. 2. 2 Somme et produit de deux suites Si les deux suites (un)n et (vn)n sont convergentes et tendent respectivement vers h et k: - La suite (un+ vn)n est convergente et tend vers h+k - La suite (un.

Exercice Suite Numérique Bac Pro Technicien

Un maquignon propose à un paysan de lui vendre un cheval pour un prix de 15 000€. Celui-ci le trouve Lire la suite En athlétisme, lors d'une course du 200 m (dite le demi-tour de piste) ou de 400 m (le tour de Mme Campin, directrice de l'EHPAD « la Cité des Fleurs », envisage d'équiper l'établissement en lits médicalisés électriques pour l'ensemble Amortissement et suites géométriques (Lycée du IV Septembre 1870 – Oloron-Ste-Marie, 2016) (ZIP) Activités démarche d'investigation, synthèse du cours et évaluation (C. Exercice suite numérique bac pro technicien. Lavallée, 2013) (ZIP) Activité TICE en bac pro tertiaire (P. Soumier, 2012) (ZIP) Les suites de Fibonacci dans la nature … (C. Lavallée, 2011) (ODT) Lire la suite

Exercice Suite Numérique Bac Pro 2018

Ensemble d'activités (10) que les élèves traitent au fur et à mesure, chacun à leur rythme (difficulté croissante). Auteur: Frédéric Flambard Activité: suites numériques descriptif Activités: suites numériques

vn)n est convergente et tends vers h. k - Si vn est différent de 0 avec tout n et k différent de 0, la suite (un/vn)n est convergente et tend vers h/k. - La suite α est convergente et tends vers α. h avec α un réel non nul. Si la suite (un)n est convergente, et la suite (vn)n est divergente, alors les suites (un+ vn)n et ()n sont divergentes. [Espace bac pro Marc Seguin] Les suites numériques. 3. Les suites usuelles 3. 1 Suites arithmétiques Une suite arithmétique est une suite ayant la forme: un+1 = un + r avec r un réel La somme des n premiers termes de la suite arithmétique est: Exemple: la suite (un)n définie de façon suivante u0 = 1 et un+1 = un + 3. On a u1 = 4, u2 = 7, u3 = 10, etc. et la somme des 4 premiers termes est S4 =. (10 + 1) = 22 3. 2 Suites géométriques Une suite arithmétique est une suite non nulle ayant la forme un+1 = q. un avec q un réel non nul Pour tout n on a: (Pour voir les formules correctement, télécharger la fiche complète gratuitement en cliquant sur le bouton "Voir ce document") Si q ≠ 1, la somme des n premiers termes de la suite géométrique est: Exemple: la suite (un)n définie de façon suivante u0 = 1 et un+1 = un.

b) Calculer: \(\lim _{x \rightarrow 0^{+}} F(x)\) en déduire la valeur de l'intégrale \(\int_{0}^{1} f(x) dx\) Exercice 5: On considère la fonction numérique \(g\) définie sur l'intervalle [0, +∞[ par g(0)=ln 2 et pour x>0: \(g(x)=\int_{x}^{2 π} \frac{e^{-t}}{t} dt \) 1-a) Montrer que ∀x>0, ∀ t∊[x, 2 x]: \(e^{-2 x} \leq e^{-t} \leq e^{-x}\) b) Montrer que ∀ x>0: \(e^{-2x} \ln 2 \leq g(x) \leq e^{-x} \ln 2\) c) En déduire que: la fonction \(g\) est continue à droite en \(0\) 2. Montrer que: la fonction \(g\) est dérivable sur l'intervalle]0, +∞[ puis calculer g '(x) pour x>0 3-a) Montrer que ∀ t>0: \(-1\leq \frac{e^{-t}-1}{t} \leq-e^{-t}\) (On pourra utiliser le théorème des accroissements finis) b) Montrer que ∀ x>0: \(-1 \leq \frac{g(x)-\ln 2}{x} \leq \frac{e^{-2 x}-e^{-x}}{x}\) c) En déduire que la fonction \(g\) est dérivable à droite en 0.